

AUGUST 2008 ANALYSIS QUALIFYING EXAM

KELLER VANDEBOGERT

1. PROBLEM 1

(a). Let $x_n \rightarrow x$ be a sequence of points in $A + B$. We want to show that $x \in A + B$; note that $x_n = a_n + b_n$ for $b_n \in B$, $a_n \in A$.

By compactness, we may choose a convergent subsequence a_{n_j} such that $a_{n_j} \rightarrow a \in A$ as $j \rightarrow \infty$. Consider then the subsequence $b_{n_j} = x_{n_j} - a_{n_j}$; as $j \rightarrow \infty$, this converges to $x - a$, and since B is closed, $x - a \in B$.

We then note that $x = (x - a) + a$ is an element of the Minkowski sum $A + B$.

(b). Set $A = \mathbb{Z}$, $B = \sqrt{2}\mathbb{Z}$. Then, $\overline{A + B} = \mathbb{R}$, but obviously $A + B \neq \mathbb{R}$, so $A + B$ is not closed.

2. PROBLEM 2

(1) \implies (2): Suppose T is continuous at a . Then, for all $\epsilon > 0$, there exists δ such that

$$\|a - y\| < \delta \implies \|Ta - Ty\| < \epsilon$$

Suppose then that $\|x - y\| < \delta$. Then, as

$$\|x - y\| = \|a - (y - x + a)\| < \delta$$

Date: December 26, 2017.

we have

$$\|Ta - T(y - x + a)\| = \|Tx - Ty\| < \epsilon$$

so that T is continuous.

(2) \implies (3): By continuity at 0, there exists $\delta > 0$ such that for all $x \in X$ with $\|x\| < \delta$, $\|Tx\| \leq 1$. For arbitrary x , we see

$$\|T(x)\| = \left\| \frac{\|x\|}{\delta} \cdot T\left(\frac{\delta x}{\|x\|}\right) \right\| \leq \frac{1}{\delta} \|x\|$$

So we may take $M := \frac{1}{\delta}$.

(3) \implies (1): Let $\epsilon > 0$. If $\|Tx\| \leq M\|x\|$, choose $\delta := \frac{\epsilon}{M+1}$. Then, whenever $\|x\| < \delta$,

$$\|Tx\| < \frac{M\epsilon}{M+1} < \epsilon$$

so that T is continuous at $a = 0$, completing the proof.

3. PROBLEM 3

Replacing f and g by $f/\|f\|_p$ and $g/\|g\|_q$ respectively, we may assume by homogeneity that $\|f\|_p = \|g\|_q = 1$ (note that if either norm vanishes the result is trivial).

By Young's inequality,

$$\begin{aligned} \|fg\|_1 &= \int_E |fg| d\mu \\ &\leq \int_E \frac{|f|^p}{p} + \frac{|g|^q}{q} d\mu \\ &= \frac{\|f\|_p^p}{p} + \frac{\|g\|_q^q}{q} \\ &= \frac{1}{p} + \frac{1}{q} = 1 \end{aligned}$$

(b). If $\frac{1}{r} = \frac{1}{p} + \frac{1}{q}$, we can translate this into the situation of part (a) by simply multiplying by r ; then $\frac{1}{p/r} + \frac{1}{q/r}$, and

$$\begin{aligned} \|fg\|_r^r &= \int_E |f^r g^r| d\mu \\ &\leq \left(\int_E |f|^p \right)^{r/p} \left(\int_E |g|^q d\mu \right)^{r/q} \end{aligned}$$

Taking r th roots in the above, we see

$$\|fg\|_r \leq \|f\|_p \|g\|_q$$

4. PROBLEM 4

(a). Let $\epsilon > 0$. We first prove the statement for simple functions. Set $s := \sum_{k=1}^N a_k \chi_{E_k}$, and let $M := \max_k \{|a_k|\}$. Choose A with $\mu(A) < \frac{\epsilon}{NM}$.

Then,

$$\begin{aligned} \int_A s d\mu &= \sum_{k=1}^N a_k \mu(E_k \cap A) \\ &< \frac{\epsilon}{NM} \sum_{k=1}^N |a_k| \\ &\leq \epsilon \end{aligned}$$

Now, for the general case, assume without loss of generality that $f \geq 0$. Let $\epsilon > 0$; by definition of Lebesgue integral we may choose $s \leq f$ a simple function such that

$$\int_{\mathbb{R}} f - s d\mu < \frac{\epsilon}{2}$$

Since s is simple, we may choose δ such that $\mu(A) < \delta$ implies $\int_A s d\mu < \epsilon/2$ by the above.

Then, for $\mu(A) < \delta$,

$$\begin{aligned}\int_A f d\mu &= \int_A f - sd\mu + \int_A sd\mu \\ &< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon\end{aligned}$$

Which gives the result.

(b). Let $\epsilon > 0$. By definition of supremum, there exists $N \in \mathbb{N}$ such that

$$\sup_{n \in \mathbb{N}} \int_E |f_n| d\mu - \int_E |f_N| d\mu < \epsilon/2$$

By part (a), since each f_n is integrable, there exists δ such that $\mu(A) < \delta$ implies $\int_A |f_N| d\mu < \epsilon/2$.

Then, let $\mu(A) < \delta$. We see:

$$\begin{aligned}\sup_{n \in \mathbb{N}} \int_E |f_n| d\mu &< \frac{\epsilon}{2} + \int_A |f_n| d\mu \\ &< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon\end{aligned}$$

5. PROBLEM 5

(a). Note first that since $|f_n| \leq g$ for all n , letting $n \rightarrow \infty$ gives $|f| \leq g$ as well. By Fatou's lemma, we see

$$\begin{aligned}0 &\leq \int_X 2^p - \lim_{n \rightarrow \infty} |f_n - f|^p d\mu \\ &\leq \liminf_{n \rightarrow \infty} \left(\int_X 2^p g - \int_X |f_n - f|^p d\mu \right) \\ &= \int_X 2^p g - \limsup_{n \rightarrow \infty} \int_X |f_n - f|^p d\mu \\ \implies \limsup_{n \rightarrow \infty} \int_X |f_n - f|^p d\mu &\leq 0\end{aligned}$$

So,

$$\|f_n - f\|_p \rightarrow 0$$

and, by the triangle inequality we see $\|f_n\|_p \rightarrow \|f\|_p$, as desired.

(b). For every p , set

$$f_n := \begin{cases} \left(\frac{-n^2}{2}x + n\right)^{1/p}, & x \in [0, 1/n] \\ 0, & x \in [1/n, 1] \end{cases}$$

Then, $f_n \rightarrow 0$ almost everywhere. However, it is easy to see that $\|f_n\|_p = 1$ for all n and p , which certainly does not tend to 0.

6. PROBLEM 6

(a). Note that

$$\begin{aligned} |\tilde{f}(\xi)| &\leq \int_{\mathbb{R}} |f(x)| dx \\ &= \|f\|_1 < \infty \end{aligned}$$

So that \tilde{f} exists and is bounded. For continuity, note that

$$|\tilde{f}(\xi + h) - \tilde{f}(\xi)| \leq 2\|f\|_1$$

So that by Lebesgue's dominated convergence theorem,

$$\begin{aligned} \lim_{h \rightarrow 0} \int_{\mathbb{R}} e^{ix\xi} (e^{ixh} - 1) d\mu &= \int_{\mathbb{R}} \lim_{h \rightarrow 0} e^{ix\xi} (e^{ixh} - 1) d\mu \\ &= 0 \end{aligned}$$

So that \tilde{f} is continuous.

(b). Note that by part (a) we have that

$$\|\tilde{f}\|_{\infty} \leq \|f\|_1$$

whence by Hölder's inequality,

$$\begin{aligned} \int_{\mathbb{R}} \tilde{f}(\xi) g(\xi) d\xi &\leq \|\tilde{f}\|_{\infty} \|g\|_1 \\ &\leq \|f\|_1 \|g\|_1 \\ \int_{\mathbb{R}} f(\xi) \tilde{g}(\xi) d\xi &\leq \|f\|_1 \|\tilde{g}\|_{\infty} \\ &\leq \|f\|_1 \|g\|_1 \end{aligned}$$

So that both integrals exist and are bounded. Now,

$$\begin{aligned}
 \int_{\mathbb{R}} \tilde{f}(\xi)g(\xi)d\xi &= \int_{\mathbb{R}} \int_{\mathbb{R}} e^{ix\xi} dx g(\xi)d\xi \\
 &= \int_{\mathbb{R}} f(x) \int_{\mathbb{R}} e^{ix\xi} g(\xi)d\xi \quad (\text{Fubini-Tonelli}) \\
 &= \int_{\mathbb{R}} f(x) \tilde{g}(x)dx
 \end{aligned}$$

Which was to be proved.

7. PROBLEM 7

Assume $|f(z)| \leq M$. By holomorphicity, we have a power series expansion

$$f(z) = \sum_{n \geq 0} a_n z^n$$

where

$$a_n = \frac{1}{2\pi i} \int_{B_r(0)} \frac{f(z)}{z^{n+1}} dz$$

Consider now for $n \geq 1$,

$$\begin{aligned}
 |a_n| &\leq \frac{1}{2\pi} \int_{B_r(0)} \frac{|f(z)|}{|z|^{n+1}} dz \\
 &= \frac{1}{2\pi r^{n+1}} \int_{B_r(0)} |f(z)| dz \\
 &\leq \frac{1}{2\pi r^{n+1}} \cdot M \cdot 2\pi r \\
 &= \frac{M}{r^n}
 \end{aligned}$$

As f is entire, we may take $r \rightarrow \infty$ to find that $|a_n| = 0$ for all $n \geq 1$; that is, $f \equiv a_0$, so that f is constant.

8. PROBLEM 8

(a). By continuity of f , give $\epsilon > 0$ there exists δ such that whenever $|\theta - t| < 2\delta$, $|f(t) - f(\theta)| < \epsilon/3$. Then,

$$\begin{aligned} \int_{-\pi}^{\pi} f(\theta - t) P_r(t) dt &= \int_{-\pi}^{\theta-\delta} f(\theta - t) P_r(t) dt \\ &\quad + \int_{\theta-\delta}^{\theta+\delta} f(\theta - t) P_r(t) dt \\ &\quad + \int_{\theta+\delta}^{\pi} f(\theta - t) P_r(t) dt \\ &:= I_1 + I_2 + I_3 \end{aligned}$$

Then, by our selection of δ ,

$$|I_2| \leq \frac{\epsilon}{3} \cdot \int_{-\pi}^{\pi} P_r(t) dt = \epsilon/3$$

Also, as $[-\pi, \pi]$ is compact and f is continuous, $|f| \leq M$, so that

$$\begin{aligned} |I_1| &\leq M \int_{-\pi}^{\theta-\delta} P_r(t) dt \\ &\leq 2\pi M \cdot \frac{(1 - r^2)}{(1 - r \cos(\delta))^2} \\ &< \epsilon/3 \end{aligned}$$

whenever $|1 - r| < \frac{(1 - \cos(\delta))^2}{12\pi M} \cdot \epsilon$. In an identical manner, we also see

$$|I_3| < \epsilon/3 \text{ for } \frac{(1 - \cos(\delta))^2}{12\pi M} \cdot \epsilon$$

Then,

$$\int_{-\pi}^{\pi} |f(\theta - t) - f(\theta)| |P_r(t)| dt < |I_1| + |I_2| + |I_3| < \epsilon$$

Note of course that

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} f(\theta) P_r(t) dt = f(\theta)$$

In which case,

$$\lim_{r \rightarrow 1^-} \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\theta - t) P_r(t) dt = f(\theta)$$

(b). Yes, this is uniform. Let $\epsilon > 0$; we may find θ' such that

$$\sup_{0 \leq \theta \leq 2\pi} |(f * P_r)(\theta) - f(\theta)| < \epsilon/2 + |(f * P_r)(\theta') - f(\theta')|$$

Now, take the limit as $r \rightarrow 1^-$ in the above to find

$$\lim_{r \rightarrow 1^-} |(f * P_r)(\theta) - f(\theta)| < \epsilon/2 < \epsilon$$

Whence the result.

(c). The solution u may be found as $u(r, \theta) := (f * P_r)(\theta)$. It remains only to see that this is harmonic; the other properties follow easily from the above two parts. Recall that in polar coordinates the Laplacian is

$$\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2}$$

Then,

$$\begin{aligned} r \frac{\partial}{\partial r} \left(\frac{1-r^2}{1-2r \cos(\theta-t) + r^2} \right) &= \frac{-2r^2}{1-2r \cos(\theta-t) + r^2} \\ &\quad + \frac{(1-r^2)(2r^2 - 2r \cos(\theta-t))}{(1-2r \cos(\theta-t) + r^2)^2} \\ \implies \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial}{\partial r} \right) \left(\frac{1-r^2}{1-2r \cos(\theta-t) + r^2} \right) &= \frac{-4}{1-2r \cos(\theta-t) + r^2} \\ &\quad + \frac{2r(-2 \cos(\theta-t) + 2r)}{(1-2r \cos(\theta-t) + r^2)^2} \\ &\quad + \frac{-2r(-2 \cos(\theta-t) + 2r)}{(1-2r \cos(\theta-t) + r^2)^2} \\ &\quad + \frac{(1-r^2)(4r - 2 \cos(\theta-t))}{r(1-2r \cos(\theta-t) + r^2)^2} \\ &\quad - \frac{2(1-r^2)(2r - 2 \cos(\theta-t))^2}{(1-2r \cos(\theta-t) + r^2)^3} \\ &= \frac{2(2 \cos^2(\theta-t)r + \cos(\theta-t)r^2 + \cos(\theta-t) - 4r)(1-r^2)}{2(1-2r \cos(\theta-t) + r^2)^3} \end{aligned}$$

Similarly,

$$\frac{\partial}{\partial \theta} \left(\frac{1-r^2}{1-2r \cos(\theta-t) + r^2} \right) = \frac{-2(1-r^2)r \sin(\theta-t)}{(1-2r \cos(\theta-t) + r^2)^2}$$

so that

$$\begin{aligned} & \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2} \left(\frac{1-r^2}{1-2r \cos(\theta-t) + r^2} \right) \\ &= \frac{-2(2 \cos^2(\theta-t)r + \cos(\theta-t)r^2 + \cos(\theta-t) - 4r)(1-r^2)}{2(1-2r \cos(\theta-t) + r^2)^3} \end{aligned}$$

And, adding those together clearly gives 0. Then, differentiation under the integral sign, we then deduce that $u(r, \theta)$ is harmonic as desired, as we have solved the Dirichlet problem.