
AUGUST 2008 ANALYSIS QUALIFYING EXAM

KELLER VANDEBOGERT

1. Problem 1

(a). Let xn → x be a sequence of points in A + B. We want to show

that x ∈ A+B; note that xn = an + bn for bn ∈ A, an ∈ A.

By compactness, we may choose a convergent subsequence anj
such

that anj
→ a ∈ A as j → ∞. Consider then the subsequence bnj

=

xnj
− anj

; as j → ∞, this converges to x − a, and since B is closed,

x− a ∈ B.

We then note that x = (x − a) + a is an element of the Minkowski

sum A+B.

(b). Set A = Z, B =
√

2Z. Then, A+B = R, but obviously A+ B 6=

R, so A+B is not closed.

2. Problem 2

(1) =⇒ (2): SUppose T is continuous at a. Then, for all ε > 0,

there exists δ such that

||a− y|| < δ =⇒ ||Ta− Ty|| < ε

Suppose then that ||x− y|| < δ. Then, as

||x− y|| = ||a− (y − x+ a)|| < δ
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we have

||Ta− T (y − x+ a)|| = ||Tx− Ty|| < ε

so that T is continuous.

(2) =⇒ (3): By continuity at 0, there exists δ > 0 such that for all

x ∈ X with ||x|| < δ, ||Tx|| 6 1. For arbitrary x, we see

||T (x)|| =
∣∣∣∣∣∣ ||x||

δ
· T
( δx

||x||

)∣∣∣∣∣∣ 6 1

δ
||x||

So we may take M := 1
δ
.

(3) =⇒ (1): Let ε > 0. If ||Tx|| 6 M ||x||, choose δ := ε
M+1

. Then,

whenever ||x|| < δ,

||Tx|| < Mε

M + 1
< ε

so that T is continuous at a = 0, completing the proof.

3. Problem 3

Replacing f and g by f/||f ||p and g/||g||q respectively, we may as-

sume by homogeneity that ||f ||p = ||g||q = 1 (note that if either norm

vanishes the result is trivial).

By Young’s inequality,

||fg||1 =

ˆ
E

|fg|dµ

6
ˆ
E

|f |p

p
+
|g|q

q
dµ

=
||f ||pp
p

+
||g||qq
q

=
1

p
+

1

q
= 1
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(b). If 1
r

= 1
p

+ 1
q
, we can translate this into the situation of part (a)

by simply multiplying by r; then 1
p/r

+ 1
q/r

, and

||fg||rr =

ˆ
E

|f rgr|dµ

6
( ˆ

E

|f |p
)r/p(ˆ

E

|g|qdµ
)r/q

Taking rth roots in the above, we see

||fg||r 6 ||f ||p||g||q

4. Problem 4

(a). Let ε > 0. We first prove the statement for simple functions. Set

s :=
∑N

k=1 akχEk
, and let M := maxk{|ak|}. Choose A with µ(A) <

ε
NM

.

Then,

ˆ
A

sdµ =
N∑
k=1

akµ(Ek ∩ A)

<
ε

NM

N∑
k=1

|ak|

6 ε

Now, for the general case, assume without loss of generality that f > 0.

Let ε > 0; by definition of Lebesgue integral we may choose s 6 f a

simple function such that

ˆ
R
f − sdµ < ε

2

Since s is simple, we may choose δ such that µ(A) < δ implies
´
A
sdµ <

ε/2 by the above.
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Then, for µ(A) < δ,ˆ
A

fdµ =

ˆ
A

f − sdµ+

ˆ
A

sdµ

<
ε

2
+
ε

2
= ε

Which gives the result.

(b). Let ε > 0. By definition of supremum, there exists N ∈ N such

that

sup
n∈N

ˆ
E

|fn|dµ−
ˆ
E

|fN |dµ < ε/2

By part (a), since each fn is integrable, there exists δ such that µ(A) <

δ implies
´
A
|fN |dµ < ε/2.

Then, let µ(A) < δ. We see:

sup
n∈N

ˆ
E

|fn|dµ <
ε

2
+

ˆ
A

|fn|dµ

<
ε

2
+
ε

2
= ε

5. Problem 5

(a). Note first that since |fn| 6 g for all n, letting n → ∞ gives

|f | 6 |g| as well. By Fatou’s lemma, we see

0 6
ˆ
X

2p − lim
n→∞

|fn − f |pdµ

6 lim inf
n→∞

( ˆ
X

2pg −
ˆ
X

|fn − f |dµ
)

=

ˆ
X

2pg − lim sup
n→∞

ˆ
X

|fn − f |pdµ

=⇒ lim sup
n→∞

ˆ
X

|fn − f |pdµ 6 0

So,

||fn − f ||p → 0

and, by the triangle inequality we see ||fn||p → ||f ||p, as desired.
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(b). For every p, set

fn :=


(
−n2

2
x+ n

)1/p
, x ∈ [0, 1/n]

0, x ∈ [1/n, 1]

Then, fn → 0 almost everywhere. However, it is easy to see that

||fn||p = 1 for all n and p, which certainly does not tend to 0.

6. Problem 6

(a). Note that

|f̃(ξ)| 6
ˆ
R
|f(x)|dx

= ||f ||1 <∞

So that f̃ exists an is bounded. For continuity, note that

||f̃(ξ + h)− f̃(ξ)| 6 2||f ||1

So that by Lebesgue’s dominated convergence theorem,

lim
h→0

ˆ
R
eixξ
(
eixh − 1

)
dµ =

ˆ
R

lim
h→0

eixξ
(
eixh − 1

)
dµ

= 0

So that f̃ is continuous.

(b). Note that by part (a) we have that

||f̃ ||∞ 6 ||f ||1

whence by Hölder’s inequality,ˆ
R
f̃(ξ)g(ξ)dξ 6 ||f̃ ||∞||g||1

6 ||f ||1||g||1ˆ
R
f(ξ)g̃(ξ)dξ 6 ||f ||1||g̃||∞

6 ||f ||1||g||1
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So that both integrals exist and are bounded. Now,

ˆ
R
f̃(ξ)g(ξ)dξ =

ˆ
R

ˆ
R
eixξdxg(ξ)dξ

=

ˆ
R
f(x)

ˆ
R
eixξg(ξ)dξ (Fubini-Tonelli)

=

ˆ
R
f(x)g̃(x)dx

Which was to be proved.

7. Problem 7

Assume |f(z)| 6 M . By holomorphicity, we have a power series

expansion

f(z) =
∑
n>0

anz
n

where

an =
1

2πi

ˆ
Br(0)

f(z)

zn+1
dz

Consider now for n > 1,

|an| 6
1

2π

ˆ
Br(0)

|f(z)|
|z|n+1

dz

=
1

2πrn+1

ˆ
Br(0)

|f(z)|dz

6
1

2πrn+1
·M · 2πr

=
M

rn

As f is entire, we may take r →∞ to find that |an| = 0 for all n > 1;

that is, f ≡ a0, so that f is constant.
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8. Problem 8

(a). By continuity of f , give ε > 0 there exists δ such that whenever

|θ − t| < 2δ, |f(t)− f(θ)| < ε/3. Then,ˆ π

−π
f(θ − t)Pr(t)dt =

ˆ θ−δ

−π
f(θ − t)Pr(t)dt

+

ˆ θ+δ

θ−δ
f(θ − t)Pr(t)dt

+

ˆ π

θ+δ

f(θ − t)Pr(t)dt

:= I1 + I2 + I3

Then, by our selection of δ,

|I2| 6
ε

3
·
ˆ π

−π
Pr(t)dt = ε/3

Also, as [−π, π] is compact and f is continuous, |f | 6M , so that

|I1| 6M

ˆ θ−δ

−π
Pr(t)dt

6 2πM · (1− r2)
(1− r cos(δ))2

< ε/3

whenever |1− r| < (1−cos(δ))2
12πM

· ε. In an identical manner, we also see

|I3| < ε/3 for
(1− cos(δ))2

12πM
· ε

Then, ˆ π

−π
|f(θ − t)− f(θ)||Pr(t)|dt < |I1|+ |I2|+ |I3| < ε

Note of course that

1

2π

ˆ π

−π
f(θ)Pr(t)dt = f(θ)

In which case,

lim
r→1−

1

2π

ˆ π

−π
f(θ − t)Pr(t)dt = f(θ)
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(b). Yes, this is uniform. Let ε > 0; we may find θ′ such that

sup
06θ62π

|(f ∗ Pr)(θ)− f(θ)| < ε/2 + |(f ∗ Pr)(θ′)− f(θ′)|

Now, take the limit as r → 1− in the above to find

lim
r→1−

|(f ∗ Pr)(θ)− f(θ)| < ε/2 < ε

Whence the result.

(c). The solution u may be found as u(r, θ) := (f ∗ Pr)(θ). It remains

only to see that this is harmonic; the other properties follow easily from

the above two parts. Recall that in polar coordinates the Laplacian is

1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2
∂2

∂θ2

Then,

r
∂

∂r

( 1− r2

1− 2r cos(θ − t) + r2

)
=

−2r2

1− 2r cos(θ − t) + r2

+
(1− r2)(2r2 − 2r cos(θ − t))

(1− 22 cos(θ − t) + r2)2

=⇒ 1

r

∂

∂r

(
r
∂

∂r

)( 1− r2

1− 2r cos(θ − t) + r2

)
=

−4

1− 2r cos(θ − t) + r2

+
2r(−2 cos(θ − t) + 2r)

(1− 2r cos(θ − t) + r2)2

+
−2r(−2 cos(θ − t) + 2r)

(1− 2r cos(θ − t) + r2)2

+
(1− r2)(4r − 2 cos(θ − t)
r(1− 2r cos(θ − t) + r2)2

− 2(1− r2)(2r − 2 cos(θ − t))2

(1− 2r cos(θ − t) + r2)3

=
2(2 cos2(θ − t)r + cos(θ − t)r2 + cos(θ − t)− 4r)(1− r2)

2(1− 2r cos(θ − t) + r2)3

Similarly,

∂

∂θ

( 1− r2

1− 2r cos(θ − t) + r2

)
=
−2(1− r2)r sin(θ − t)

(1− 2r cos(θ − t) + r2)2
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so that
1

r2
∂2

∂θ2

( 1− r2

1− 2r cos(θ − t) + r2

)
=
−2(2 cos2(θ − t)r + cos(θ − t)r2 + cos(θ − t)− 4r)(1− r2)

2(1− 2r cos(θ − t) + r2)3

And, adding those together clearly gives 0. Then, differentiation under

the integral sign, we then deduce that u(r, θ) is harmonic as desired,

as we have solved the Dirichlet problem.


